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T he energy problem in wireless sensor networks re-
mains one of the major barriers preventing the com-
plete exploitation of this technology. Sensor nodes 

are typically powered by batteries with a limited lifetime, and 
even when additional energy can be harvested from the exter-
nal environment, it remains a limited resource to be consumed 
judiciously. Effi cient energy management is thus a key require-
ment, with most strategies assuming that data acquisition con-
sumes signifi cantly less energy than data transmission. When 
this assumption does not hold, effective energy management 
strategies should include policies for an effi cient use of energy-
hungry sensors.

Introduction
A wireless sensor network (WSN) consists of a large number 
of tiny sensor nodes deployed over a geographical area, also 
referred to as a sensing fi eld; each node is a low-power device 
that integrates computing, wireless communication, and 
sensing abilities. Nodes 
are organized in clusters 
and networks and coop-
erate to perform an as-
signed monitoring (and/
or control) task. There is no 
human intervention, and 
the spatial and temporal 
scales and resolutions are 
diffi cult, if not impossible, 
to achieve with traditional 
techniques. Sensor nodes 
are able to sense physical 
environmental informa-
tion (e.g., temperature, 
humidity, vibration, ac-

celeration, etc.), process the acquired data locally both at the 
unit and cluster level, and send the outcome—or aggregated 
features—to the cluster and to one or more collection points, 
named sinks or base stations (Figure 1). A WSN can thus be 
viewed as an intelligent distributed measurement technology 
adequate for many different monitoring and control contexts. 
In recent years, the number of sensor network deployments 
for real-life applications has rapidly grown, a trend expected 
to further increase in the coming years.

Energy consumption is one of the main obstacles to the uni-
versal application of WSNs. In applications for which a long 
network lifetime and high quality of service are required, the 
batteries that power the nodes need to be replaced or recharged 
because of environmental constraints, and that is not possible 
in all cases. Even though energy-scavenging mechanisms can 
be adopted to recharge batteries through solar panels, piezo-
electric or acoustic transducers, energy is a limited resource 
and must be used judiciously [1]. Sensor networks use energy 
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Fig. 1. A typical sensor network architecture.



April 2009 IEEE Instrumentation & Measurement Magazine 17

in monitoring complex phenomena and in communicating the 
data. Effi cient energy management strategies must be devised 
at sensor nodes and then at cluster and network levels to pro-
long the network lifetime as much as possible. Only recently 
have the sensors used more energy for acquiring the data than 
for communication of that data. This is mainly due to specifi c 
sensors used in the network [2].

Several energy management schemes have been proposed 
for reducing the power consumption acting at the radio level. 
A detailed survey is found in [3]. 

Table 1 shows power consumptions of the most popular 
radio equipment used by sensor nodes, and Table 2 lists some 
common off-the-shelf sensors. If acquisition times are longer 
than transmission times, we can conclude that some sensors 
may even consume signifi cantly more energy than the radio. 

Energy management schemes aimed at minimizing the 
radio activity need to be complemented with (or replaced 
by) techniques for energy-effi cient management at the sen-
sor level, to reduce the number of data acquisitions (i.e., data 
samples) rather than the number of transmitted messages. 
At the unit, cluster, and network levels, data compression 
and aggregation can be considered. Most of the management 
schemes assume that data acquisition and processing consume 
signifi cantly less energy than does communication and thus 
they minimize radio activity.

In this paper we classify and review the main approaches 
proposed for energy management at the sensor level. We in-
troduce a general framework for energy-effi cient data acquisi-
tion from sensors, provide a framework for adaptive sensing 
strategies, survey the main solutions proposed in the related 
literature, and discuss the proposed methods and some open 
research issues.

A General Framework for Energy-
Effi cient Sensor Management
Most monitoring applications based on sensor networks rely 
on a synchronous philosophy by which readings are carried 
out with a given sampling frequency. In this case, two main ap-
proaches can be considered to reduce the energy consumed by 
a sensor, duty cycling and adaptive sensing. Duty cycling consists 
of “waking up” the sensor system only for the time needed 
to acquire a new set of samples and then powering it off im-
mediately afterwards. Duty cycling plans for optimal energy 
management, provided that the properties of the event being 

monitored are time-invariant and known in advance. Peri-
odic sensing is another method of sampling. Here, the (fi xed) 
sampling rate is computed a priori, based on partial available 
information about the event to be monitored and assuming 
that the event properties are stationary. With this method, the 
sampling rate is larger than necessary, resulting in oversam-
pling, and more energy is consumed. 

An adaptive sensing strategy is able to dynamically change 
the sensor activity to the real dynamics of the process. An effi -
cient adaptive sensing strategy reduces the number of samples, 
which in turn reduces the amount of data to be processed and 
transmitted. Duty cycling and adaptive sensing are comple-
mentary approaches and can be used in combination (Figure 

Fig. 2. A general framework for sensor energy management.

Table 1—Power consumption for 
some common radios

Radio Producer
Power consumption

Transmission Reception

JN-DS-
JN513x

Jennic 111 mW (at 1 
dBm)

111 mW

CC2420 Texas Instruments 35 mW (at 0 dBm) 38 mW

CC1000 Texas Instruments 42 mW (at 0 dBm) 29 mW

TR1000 RF Monolithics 36 mW (at 0 dBm) 9 mW

Table 2—Power consumption for some 
off-the-shelf sensors

Sensor Producer Sensing 
Power 

consumption

STCN75 STM Temperature 0.4 mW

QST108KT6 STM Touch 7 mW

SG-LINK 
(1000Ω)

MicroStrain Strain gauge 9 mW

SG-LINK 
(350Ω)

MicroStrain Strain gauge 24 mW

iMEMS ADI Accelerometer 
(three-axis)

30 mW

2200 Series, 
2600 Series

GEMS Pressure 50 mW

T150 GEFRAN Humidity 90 mW

LUC-M10 PEPPERL+
FUCHS

Level sensor 300 mW

CP18, VL18, 
GM60, 
GLV30

VISOLUX Proximity 350 mW

TDA0161 STM Proximity 420 mW

FCS-GL1/2A4-
AP8X-H1141

TURCK Flow control 1,250 mW
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2). The operating system provides a set of commands to power 
the sensors on and off (the duty cycle part); then it implements 
an adaptive sensing strategy and the sensors acquire data. 

In designing the sensor drivers for this operating system, 
the duty cycle must be carefully constructed around the sen-
sors’ wake-up latency and break-even cycle or the sensor system 
may return invalid acquired data or may have energy dis-
sipation larger than that associated with the always-on mode 
[4]. The wake-up latency is the time required by the sensor to 
generate a correct value once activated. If the sensor reading 
is performed before the wake-up latency has elapsed, the 
acquired data is not valid. The break-even cycle is defined as the 
rate at which the power consumption of a node with a power 
management policy is equal to that of one with no power 
management. This value is in inverse proportion to the power 
consumption overhead introduced by the non-ideal, on/off 
sensor transition and it represents the highest sampling rate 
possible using power management. Each sensor has a set of 
functional characteristics that include wake-up latency and a 
break-even cycle that impact the energy management of the 
sensor. Also, the break-even cycle is not fixed, since the energy 
consumed by the sensor during normal operations and in on/
off transitions depends on the supply voltage, which changes 
over time [4].

Unfortunately, most currently available operating systems 
for sensor nodes do not follow this philosophy and instead 
let the application programmer decide when to power the 
sensor on and off (manual management). Future operating 
systems will have to adopt the automated and sensor-specific 
approach to relieve the manual management and to improve 
the effectiveness of the duty-cycling mechanism. The general 
framework of Figure 2 allows the WSN designer to focus on 
the selection of the best adaptive sensing strategy, leaving low-
level duty cycling aspects to the operating system. 

Organization of Adaptive Sensing 
Strategies
Figure 3 shows an organization of the adaptive sensing strate-
gies based on the classification given in [3]. Adaptive sensing can 
be implemented using three different approaches: hierarchical 
sensing, adaptive sampling, and model-based active sensing. 

Hierarchical  
Sensing  
Techniques 
These techniques assume 
that multiple sensors are 
installed on the sensor 
nodes and observe the 
same event with a differ-
ent resolution and power 
consumption (Figure 4). 
In most cases, simple sen-
sors are energy efficient 
and provide low-resolu-
tion readings or trigger an 
event. Advanced, more 

complex sensors give more accurate readings of the physical 
property at the cost of greater energy consumption. The more 
advanced, accurate, but power-hungry sensors can be activat-
ed to make more measurements to improve the low-resolution 
readings. The idea behind hierarchical sensing techniques is 
to dynamically select which of the available sensors must be 
activated by trading off accuracy for energy conservation. The 
resultant measurement is inferred by processing data coming 
from all of the sensors.

Triggered sensing is when more accurate and power-con-
suming sensors are activated after the low-resolution sensors 
detect some activity within the sensed area. An example of 
triggered sensing is presented in [5] for structural health moni-
toring and damage detection of a bridge. The bridge is split 
into zones and instrumented with sensing units capable of de-
tecting two scales of responses: for large structural movement 
using accelerometers (MEMS and piezoelectric) and stress on 
materials using strain gauges (the three-wire quarter-bridge 
circuit). A central node supervises all the activities of the sen-
sor network and has a triggering system: sensor units are ac-
tivated when isolated; large payload vehicles are detected on 
the bridge by an imaging system. Initially, in each sensor unit, 
only accelerometers are activated to collect data and perform 
a local assessment of potential damage. If sensor units detect 
possible damage, they remain awake and exchange informa-
tion with their neighbor accelerometers to cross-check their 
readings, while all other sensor units return to sleep to con-
serve energy. Whenever possible damage is detected, strain 
gauges present in the area are activated to get more accurate 
information to corroborate or dismiss the initial suspicion. The 
central node transmits alert information about the possible 
damage localization to the base station, and then the sensor 
units return to sleep.

A different triggered approach is presented in [6] for an 
image-based wireless sensor network for object detection. The 
sensing units have integrated CMOS camera modules that are 
configured to provide low-resolution images to reduce energy 
consumption. Image processing detects the potential presence 
of targets. If targets are detected, cameras are reconfigured into 
a fine-grained, high-quality image and provide images with 
high resolution. Object detection is verified by these images. 

Fig. 3. Organization of adaptive sensing strategies.
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The cameras are then reconfigured to the power-saving low-
resolution modality.

Multi-scale sensing is a different use of hierarchical sens-
ing. It identifies areas within the monitoring field that require 
a more accurate observation. This is obtained by relying on 
low-resolution data from sensors in the field and activating 
additional high-resolution sensors only in areas where their 
accurate acquisitions are requested [7]. 

An example of multi-scale sensing involves fire emergency 
management [8]. The sensor field is instrumented with static 
sensors which monitor the environment. When a given area 
presents an anomaly (e.g. the sampled temperature is above 
a given threshold), static nodes ask the base station for more 
specific data. As a consequence, the base station sends a mobile 
sensor unit to visit the potentially critical location; the sensor 
unit collects data and takes a snapshot of the scene. The mobile 
unit then goes back to the base station and reports the acquired 
data. 

Adaptive sampling 
Adaptive sampling techniques change the sampling rate by 
making correlations between the sensed data and information 
related to the available energy. If the quantity of interest evolves 
slowly with time so that subsequent samples do not differ very 
much it is possible to reduce the sampling rate based on this 
temporal correlation. It is also very likely that measurements 
taken by sensor nodes that are spatially close to each other do 
not differ significantly. If so, then this spatial correlation can 
be used to reduce the energy-sensing consumption. Activity-
driven adaptive sampling combines both of these approaches 
to further reduce the number of samples to be acquired. The 
sampling rate can also be adjusted dynamically with harvest-
aware adaptive sampling that depends on the available energy, 
including when the sensor node is able to harvest energy from 
the environment. It is important to note that when using adap-
tive sampling, data losses introduced by the sensor network 
cannot be tolerated, and 100% reliability is required in the com-
munication from sensor nodes to the sink. This can be achieved 
by using re-transmissions of missed data, forward error correc-
tion, and multi-path routing techniques. All these techniques 
increase the percentage of data correctly delivered to the sink at 
the cost of additional energy consumed by the radio.

Activity-based adaptive sampling
This technique uses the temporal and spatial correlation from 
the acquired data (Figure 5). 

Temporal correlation was used in an adaptive sampling 
algorithm for minimizing the energy consumption of a snow 
sensor [9]. The algorithm dynamically estimates the current 
maximum frequency of the signal by using a first set of ac-
quired samples and relies on a modified version of the cumu-
lative sum (CUSUM) test to detect changes in this frequency. 
A change is identified when the current maximum frequency 
is above or below a threshold that is determined with CUSUM 
for some consecutive samples. A change then affects the new 
sampling frequency, so an update is needed. The computation-
al load is high, so the algorithm is executed at the base station 
and the new estimated sampling rates are sent to each sensor 
node—a centralized approach.

A similar approach has been suggested in [10], where the 
sampling rate is adapted based on the outcome of a Kalman 
filter. The Kalman filter is executed on sensor nodes. This solu-
tion might not be feasible in sensor networks consisting of tiny 
devices with limited computational capabilities—a decentral-
ized approach. 

Adaptive sampling is also proposed in [11], in which a 
flood alerting system (FloodNet) is presented. The system in-
cludes a flood predictor that is used to adjust the reporting rate 
of individual nodes—an application-specific approach. 

A spatial correlation approach with a backcasting scheme 
has been investigated [12]. The main idea is that more nodes 
should be active in areas in which there is a large difference in 
the data from nodes situated close together. In the first phase, 
or preview, only a subset of the total number of nodes are acti-
vated, which allows the network to get a low-resolution esti-
mate by the spatial distribution in the sensor field. The nodes 
also partition the sensing field into a number of subsquares of 
nonuniform size. Large subsquares are formed when there is 
little variation between data sent from nodes in that area. Small 
subsquares are partitioned when there is a large difference 
between the data coming from the nodes. Small subsquares 
generate a preliminary hypothesis that is sent to a fusion cen-
ter, the sink. It suggests additional sensors to activate in order 
to obtain more data. In the refinement phase, the additional 
sensors are activated, and each node is managed by a cluster 
head. The “backcast” procedure occurs when the fusion center 
sends an activation message to those cluster-heads residing 
in the smallest square areas. If the sensing field has no small 
subsquares, the preview phase provides accurate data and the 
refinement phase is not necessary.

Spatial correlation is also used to selectively reduce the 
number of nodes used to send data to the sink [13]. In detail, 
a spatial Correlation-Based Collaborative MAC protocol (CC-
MAC) is suggested, which regulates access and prevents 
redundant transmissions from close sensors. An Iterative Node 
Selection algorithm computes a correlation radius at the sink 
based on the maximum distortion tolerable by the application. 
This information is then broadcast to sensor nodes during the 
network setup and is used during the operational phase. CC-

Fig. 4. Hierarchical sensing: multiple sensors observe the same phenomenon 
with different resolution and energy consumption.
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MAC prevents the transmission of redundant information by 
allowing only a single node within an area determined by the 
correlation radius to transmit its data to the sink. All the other 
nodes whose distance from this representative node is less 
than the correlation radius do not transmit.

The final solution uses both spatial and temporal correla-
tion within an environmental monitoring application [14]. It 
uses an actuation-enabled robotic sensor called the Networked 
Info-Mechanical System, which is a mobile node carrying me-
teorological sensors. Sampling is initiated in a combination of 
different phases. At first, a navigation criterion defines how 
the mobile sensor has to move along the field based on cost, 
position information, and variation of the phenomenon under 
measurement. In this way, the location of the sensors is tailored 
to the desired error, and areas inducing a higher error are 
sampled more densely. Besides spatial correlation, the system 
also incorporates an adaptive parameters selection, so that 
temporal correlation between samples is also used.

Harvesting-Aware Adaptive Sampling
The harvesting-aware adaptive sampling techniques op-
timize power consumption at the unit level by using the 
known remaining battery energy and the forecasted energy 
coming from a harvester module. This technique is also 
called harvesting-aware power management. It develops 
models that characterize energy availability and the energy 
consumption of sensor units over time. Kansal et al. [15] fo-
cus on solar radiation as an energy harvesting source and de-
fine a time-varying energy harvesting prediction model, Ps, 
computed with a weighted-moving-average of the energy 
scavenged in previous days, and the energy consumption 
profile, Pc, is estimated. The non-ideality of the harvesting 
system is modeled by considering both a loss in charging 
operation due to the non-ideal charging efficiency, , and the 
leakage power Pleak, of the energy storage medium (e.g., bat-
teries or supercapacitors). 

This mathematical framework allows the authors to define 
an energy-neutral operating mode, which guarantees that the 
harvested energy is consumed at an appropriate rate to maxi-
mize the lifetime of the units. The available energy is

with T [0, ∞), where B0 is the initial stored energy and [Ps(t) 
− Pc(t)] + = max[0, Ps(t) − Pc(t)]. The basic idea of the proposed 
power management algorithm is to dynamically iden-
tify the maximum duty-cycle, which consequently maximizes 

, for energy-neutral operations. Vigorito, Ganesan, 
and Barto [16] propose a different physical model-free scheme 
that makes no assumptions about the nature and dynamics 
of the energy source. In their work the energetic problem has 
been reformulated as a linear-quadratic tracking problem, one 
solved with a simple ad-hoc control law.

Finally, [17] introduces a decentralized adaptive sampling 
algorithm developed for predicting the occurrence of floods. 
Sensor nodes acquire data to reduce the total uncertainty er-
ror of information collected at the base station (expressed in 
terms of confidence bands about the linear regression line). 
The adaptive sampling algorithm minimizes the total uncer-
tainty error while minimizing the amount of data acquired by 
each sensor. The authors formulate the adaptive sampling as a 
linear programming problem, which is solved by using integer 
programming.

Model-Based Active Sensing 
This technique builds a forecasting model of the sensed 
phenomenon with an initial set of sampled data (Figure 6). 
Once the model is available, the next data can be predicted 
by the model verified over time instead of through continu-
ous frequent sampling in the field, which saves the energy 
consumed for data sensing and transmission. Whenever the 
requested accuracy is not satisfied, the model is updated or 

Fig. 5. Activity-driven adaptive sampling: the sampling rate is adapted to the physical phenomenon under observation.
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reestimated to adhere to the new dynamics of the physical 
phenomenon under observation. The effectiveness of this 
approach is bounded by the accuracy of the model and the 
nature of the process to be monitored. If the model is effective 
in forecasting the incoming data up to time K−1, then only 
one out of K data will be transmitted to the sink. Once data is 
received, the model is updated by integrating the incoming 
information, and the parameters are broadcast back to the 
network units. The consequence is that model-based active 
sensing reduces the energy needed for data acquisition and 
transmission to the sink.

Model-based active sensing was first proposed in [18] 
in the framework of the Barbie-Q (BBQ) query system. The 
query system relies on a probabilistic model and a query 
planner in the sink. Starting from a given number of samples, 
a probability density function of a set of attributes is derived, 
which can be exploited to obtain spatial and temporal cor-
relations. The planner builds a query plan including a list 
of sensors and the most relevant quantities to obtain. For 
example, when a user is interested in the temperature sensed 
in a given area, the planner chooses the subset of sensors to 
be contacted and the quantities to be sampled. In fact, the 
temperature can be measured directly with the dedicated 
transducer, but it can also be derived from the voltage mea-
sured at the destination node. (This is an example of cor-
relation between different attributes.) In general, a voltage 
measurement is cheaper than a temperature measurement. 
As a consequence, the planner may choose to get the voltage 
at some nodes to reduce the overall power consumption as-
sociated with the query. Upon receiving a query, the planner 
computes the observation cost by considering both sampling 
and communication. Since computing the optimal solu-
tion has an exponential complexity, the authors proposed a 
polynomial-time effective heuristic.

A similar method is suggested in [19]; this method is called 
an adaptive sampling approach to data collection (ASAP). In 
contrast with BBQ, ASAP splits the network into clusters: a 
cluster formation phase elects cluster heads and assigns nodes 
to clusters. The similarity of sensor readings and the hop 
count are used to group nodes within the same cluster. Not 
all nodes in the same cluster are requested to sample the en-

vironment: the correlation-based sampler selection is performed 
at each cluster head and determines those sampler nodes that 
best capture the spatial and temporal correlations among the 
other sensor readings. Probabilistic models are built for not-
used nodes. Finally, ASAP collects sensor readings from only 
a subset of nodes (sampler nodes) that have been previously 
selected. The values of not-sampler nodes are predicted using 
the probabilistic models built in the previous step; clusters are 
dynamically changed after each predefined schedule update 
period.

A different approach is given by a Utility-Based Sensing and 
Communication protocol that is presented in the context of a 
glacial-environment monitoring application [20]. In this case, 
a limited-window linear regression model is used to forecast 
samples. The algorithm for updating the sampling frequency 
runs at the network nodes: if the predicted value falls out-
side the confidence interval, then the sampling frequency is 
increased to a predefined maximum value. This improves 
the accuracy during the model update. If the prediction lies 
within the confidence interval, the sampling frequency is 
decreased by a given factor, unless a minimum predefined 
frequency is reached. In addition to the sensing model, the 
authors also define a routing protocol, which accounts for the 
energy spent for both sensing and communication. Sensors 
that are not relaying data can perform additional sampling, 
and routes in which data is sampled with lower frequency 
are preferred to routes in which nodes spend more energy 
for sampling.

Conclusions
We have surveyed the main research for extending the life-
time of sensor units with energy-hungry sensors. The general 
framework for energy-efficient data acquisitions is based on 
a duty cycle approach requiring the sensing board to be 
switched off between two consecutive samples. The hierarchi-
cal sampling techniques are actually feasible when the network 
units are endowed with multiple sensors observing the same 
phenomenon with a different resolution and power consump-
tion. Triggered sensing is particularly suitable for object/event 
detection systems. It uses low-power, low-resolution sensing 
units to activate high-resolution and more power-consuming 

sensors that allow more ef-
fective object/event detec-
tion. Multi-scale sensing 
is particularly suitable for 
environmental monitor-
ing applications, since it 
identifies those areas that 
require a more accurate 
observation.

Techniques based on 
activity-based adaptive 
sampling are very prom-
ising as they are general 
and efficient. However, 
most of the proposed solu-

Fig. 6. Model-based active sensing creates a model of the physical phenomenon under observation and predicts incoming 
data verified by samples over time without the need to acquire them.
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tions are limited to either temporal or spatial correlation. A 
more energy-efficient approach would be obtained by using a 
spatio-temporal correlation. 

It is emphasized that reducing the amount of acquired data 
by using adaptive sampling techniques also reduces the en-
ergy consumed for data communication. It is important to note 
that when using adaptive sampling, data losses introduced by 
the sensor network cannot be tolerated, and 100% reliability is 
required in the communication from sensor nodes to the sink. 
Therefore, when assessing the performance of an adaptive 
sampling solution, one should consider the total energy con-
sumed by the entire sensor network with and without adap-
tive sampling. Finally, adaptive sampling techniques are often 
implemented in a centralized fashion because they require 
rather huge computations. To this end, additional work should 
focus on reducing the complexity of these solutions so that vi-
able distributed approaches can be afforded as well. 

Harvesting-aware adaptive sampling is a very interesting 
approach that promises to prolong the network lifetime to a 
virtually unlimited time. This is a desirable property for cred-
ible deployments of sensor networks in real environments. 
These techniques have been introduced only recently and they 
represent an interesting research field. The main limitation 
of this approach is that it can only be used when the energy 
source is predictable. 

Model-based active sensing is also very interesting. How-
ever, in most cases, solutions based on this approach are com-
putationally expensive and must be implemented in a central-
ized way. In this context, model-based techniques should be 
improved in the direction of deriving distributed algorithms 
for model computation and diffusion through the network. 
Selection of the most appropriate model is the key issue in the 
design of a model-based active sensing strategy. In general, 
this choice is application specific.
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